
A Tool for Easily Integrating Grammars as
Language Models into the Kaldi Speech
Recognition Toolkit

Benjamin Lecouteux, Didier Schwab
Université Grenoble Alpes

Lucía Ormaechea Grijalba, Pierrette Bouillon
Université de Genève

Bridges and Gaps between Formal and Computational Linguistics, ESSLLI 2022

Plan

1. Introduction

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

2. Designing kaldi-grammar-compiler

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi-readable LMs

3. Evaluation

1. Corpora

2. ASR setup

3. Results

4. Conclusion

Language Models:

● Represent a crucial component in the design of Automatic Speech Recognition

(ASR) systems.

● And more particularly, in the context of traditional HMM-DNN ASR systems.

1. Introduction

3/14

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

Language Models:

● Represent a crucial component in the design of Automatic Speech Recognition

(ASR) systems.

● And more particularly, in the context of traditional HMM-DNN ASR systems.

1. Introduction

3/14

Acoustic Models Lexicon Models Language Models

a

s

WORD PHON
vous v u
avez a v e

Speech-to-Text Decoder

Est-ce que vous avez mal au ventre ?

NGRAMS SCORE
vous avez 2.5
avez mal 1.8

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

1. Introduction

Two different types of Language Models (LMs) according to its way of reasoning:

4/14

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

1. Introduction

Two different types of Language Models (LMs) according to its way of reasoning:

4/14

CORPUS-BASED

LM is inferred from data

✓ Availability of resources and tools
✓ Generalizability
✕ Short memory span (n-gram-based)
✕ High-quality data not always available

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

1. Introduction

Two different types of Language Models (LMs) according to its way of reasoning:

4/14

CORPUS-BASED

LM is inferred from data

KNOWLEDGE-BASED*

LM is inferred from rules

✓ Availability of resources and tools
✓ Generalizability
✕ Short memory span (n-gram-based)
✕ High-quality data not always available

✓ Parsing efficiency
✓ Can alleviate the shortage of data
✓ Large scope of constraints between words
✕ Lack of software to easily feed them into

ASR toolkits

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

*Also known as grammar-based.

1. Introduction

Two different types of Language Models (LMs) according to its way of reasoning:

4/14

CORPUS-BASED

LM is inferred from data

KNOWLEDGE-BASED*

LM is inferred from rules

✓ Availability of resources and tools
✓ Generalizability
✕ Short memory span (n-gram-based)
✕ High-quality data not always available

✓ Parsing efficiency
✓ Can alleviate the shortage of data
✓ Large scope of constraints between words
✕ Lack of software to easily feed them into

ASR toolkits

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

OpenGrm Kaldi Active Grammars

*Also known as grammar-based.

1. Introduction

5/14

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

The scarcity of tools for integrating grammar-based LMs into ASR systems

1. Introduction

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

The scarcity of tools for integrating grammar-based LMs into ASR systems

Development of a new tool for easily integrating regular grammars
into the ASR architecture

lead us to…

kaldi-grammar-compiler

5/14

1. Introduction

1. Language Modeling and ASR

2. LM types: pros and cons

3. Introducing a new tool

The scarcity of tools for integrating grammar-based LMs into ASR systems

Development of a new tool for easily integrating regular grammars
into the ASR architecture

lead us to…

Under two main principles:

1. Prone to extensive use → With its implementation in a widely

used ASR toolkit.

2. Easy-to-use → Ensuring good usability for linguists and

translators.

kaldi-grammar-compiler

5/14

2. Designing kaldi-grammar-compiler

6/14

Kaldi – Speech Processing ToolkitPRINCIPLE I: Prone to extensive use

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

● Introduced by (Povey et al., 2011) as an open source toolkit for speech processing.

● Widely used within the ASR community.

● Highly usable and modifiable.

● Uses a Finite State Transducer (FST) framework for training and decoding algorithms

(Horndasch et al., 2016).

Kaldi – Speech Processing ToolkitPRINCIPLE I: Prone to extensive use

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

2. Designing kaldi-grammar-compiler

6/14

H → HMM C → Context L → Lexicon G → Grammar

Input label HMM state Context phone Phone Word

Output label Context phone Phone Word Word

Four different
levels of FSTs

● Introduced by (Povey et al., 2011) as an open source toolkit for speech processing.

● Widely used within the ASR community.

● Highly usable and modifiable.

● Uses a Finite State Transducer (FST) framework for training and decoding algorithms

(Horndasch et al., 2016).

● Introduced by (Povey et al., 2011) as an open source toolkit for speech processing.

● Widely used within the ASR community.

● Highly usable and modifiable.

● Uses a Finite State Transducer (FST) framework for training and decoding algorithms

(Horndasch et al., 2016).

Kaldi – Speech Processing ToolkitPRINCIPLE I: Prone to extensive use

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

2. Designing kaldi-grammar-compiler

6/14

Four different
levels of FSTs

H → HMM C → Context L → Lexicon G → Grammar

Input label HMM state Context phone Phone Word

Output label Context phone Phone Word Word

7/14

● Finite-state based and language independent.

● Designed for the rapid development of small to medium vocabulary speech translation applications (Rayner et al., 2016).

● Featuring an user-friendly syntax, with rules describing individual sentences.

Regulus Lite (RL) GrammarsPRINCIPLE II: Easy-to-use

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

2. Designing kaldi-grammar-compiler

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

7/14

Utterance

Source $avez_vous (mal | des

douleurs) quelque part

EndUtterance

● Finite-state based and language independent.

● Designed for the rapid development of small to medium vocabulary speech translation applications (Rayner et al., 2016).

● Featuring an user-friendly syntax, with rules describing individual sentences.

Regulus Lite (RL) GrammarsPRINCIPLE II: Easy-to-use

Source pattern

2. Designing kaldi-grammar-compiler

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

7/14

Utterance

Source $avez_vous (mal | des

douleurs) quelque part

EndUtterance

● Finite-state based and language independent.

● Designed for the rapid development of small to medium vocabulary speech translation applications (Rayner et al., 2016).

● Featuring an user-friendly syntax, with rules describing individual sentences.

Regulus Lite (RL) GrammarsPRINCIPLE II: Easy-to-use

Source pattern PhraseId pattern

PhraseId $avez_vous

Source (avez-vous | vous avez)

EndPhraseId

2. Designing kaldi-grammar-compiler

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

8/14

2. Designing kaldi-grammar-compiler

Kaldi supports any LM that is representable as an FST, given its finite-state-based framework

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

8/14

2. Designing kaldi-grammar-compiler

Chomsky Hierarchy

Grammar Language Automaton

Type-0 Recursively
enumerable

Turing
machine

Type-1 Context-sensitive
Linear

bounded
automaton

Type-2 Context-free Push-down
automaton

Type-3 Regular Finite
automaton

Kaldi supports any LM that is representable as an FST, given its finite-state-based framework

Regulus Lite grammars fall into the category of
regular grammars

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

8/14

2. Designing kaldi-grammar-compiler

Chomsky Hierarchy

Grammar Language Automaton

Type-0 Recursively
enumerable

Turing
machine

Type-1 Context-sensitive
Linear

bounded
automaton

Type-2 Context-free Push-down
automaton

Type-3 Regular Finite
automaton

Kaldi supports any LM that is representable as an FST, given its finite-state-based framework

Regulus Lite grammars fall into the category of
regular grammars

The language produced by this type of grammars
is recognized or accepted by a FST

Meaning that…

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

9/14

2. Designing kaldi-grammar-compiler

Utterance

Source $avez_vous (mal | des

douleurs) quelque part

EndUtterance
PhraseId $avez_vous

Source (avez-vous | vous avez)

EndPhraseId

FST Conversion

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

9/14

2. Designing kaldi-grammar-compiler

Utterance

Source $avez_vous (mal | des

douleurs) quelque part

EndUtterance
PhraseId $avez_vous

Source (avez-vous | vous avez)

EndPhraseId

Compilation

Unification

Determinization

OpenFST

FST Conversion

1. Tool setup: Kaldi and Regulus Lite (RL)

2. RL grammars into Kaldi readable LMs

9/14

2. Designing kaldi-grammar-compiler

Utterance

Source $avez_vous (mal | des

douleurs) quelque part

EndUtterance
PhraseId $avez_vous

Source (avez-vous | vous avez)

EndPhraseId

Compilation

Unification

Determinization

OpenFST

FST Conversion

G.fst Graph

● Representing the input Regulus Lite grammar.
● Readable as a LM in Kaldi.

3. Evaluation

1. Corpora

2. ASR setup

3. Results

● Dedicated corpora → Gathered via data collection campaigns.

● Highly domain-specific → Derived from ASR systems being used under

very particular scenarios.

For evaluation purposes:

10/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Language Speakers Gender Length Utterances Words

MeDiCo (Medical
Discourse Corpus)

French 14 9F, 5M 0h 41mn 713 ⪅6k

HomeAutomation
(Vacher et al.,

2014)
French 23

9F,
14M

1h 38mn 3114 ⪅10k

● Dedicated corpora → Gathered via data collection campaigns.

● Highly domain-specific → Derived from ASR systems being used under

very particular scenarios.

For evaluation purposes:

10/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

● Two different Kaldi ASR engines were built.

● Both integrated a regular grammar as LM in their decoding graph (HCLG).

11/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Acoustic Models (HC)

a

s

Speech-to-Text Decoder (HCLG)

Resulting transcription

HMM-DNN model for
French, trained using
Common Voice Dataset.

● Two different Kaldi ASR engines were built.

● Both integrated a regular grammar as LM in their decoding graph (HCLG).

11/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Acoustic Models (HC)
Grapheme-to-phone
mapping based on:
● BDLEX French

database.
● LIA_PHON phonetizer.

Lexicon Models (L)

a

s

WORD PHON
vous v u
avez a v e

Speech-to-Text Decoder (HCLG)

Resulting transcription

HMM-DNN model for
French, trained using
Common Voice Dataset.

● Two different Kaldi ASR engines were built.

● Both integrated a regular grammar as LM in their decoding graph (HCLG).

11/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Acoustic Models (HC)
Grapheme-to-phone
mapping based on:
● BDLEX French

database.
● LIA_PHON phonetizer.

Lexicon Models (L) Language Models (G)

a

s

WORD PHON
vous v u
avez a v e

Speech-to-Text Decoder (HCLG)

Resulting transcription

Source est-ce que
vous avez (des
douleurs | mal) au
ventre ?

kaldi-grammar-compiler

HMM-DNN model for
French, trained using
Common Voice Dataset.

● Two different Kaldi ASR engines were built.

● Both integrated a regular grammar as LM in their decoding graph (HCLG).

11/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

● Evaluation measured in terms of Word Error Rate (WER), to calculate the transcription

accuracy.

where:
S = number of substitutions
D = number of deletions
I = number of insertions
N = number of words in the reference

x 100
S + D + I

WER =
N

Key points:

12/14

3. Evaluation

1. Corpora

2. ASR setup

3. Results

● Evaluation measured in terms of Word Error Rate (WER), to calculate the transcription

accuracy.

● Compared the grammar-based ASR systems against a baseline 3-gram LM, inferred from

data generated by the Regulus Lite grammars.

where:
S = number of substitutions
D = number of deletions
I = number of insertions
N = number of words in the reference

S + D + I
WER =

N

Key points:

12/14

x 100

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Model Corpus
Recognized

words
I D S WER (%)

Grammar-based
LM

MeDiCo 5208 / 5598 58 76 256 6.97

Home
Automation

8975 / 9639 86 338 240 6.89

Baseline n-gram
LM

MeDiCo 4690 / 5598 298 85 525 16.22

Home
Automation

8850 / 9639 156 161 472 8.19

13/14

● Both MeDiCo and HomeAutomation return a significantly low WER.

● The ability of the grammars to extend the span of linguistic constraints between

words has a positive effect in the context of highly domain-specific ASR

applications.

3. Evaluation

1. Corpora

2. ASR setup

3. Results

Model Corpus
Recognized

words
I D S WER (%)

Grammar-based
LM

MeDiCo 5208 / 5598 58 76 256 6.97

Home
Automation

8975 / 9639 86 338 240 6.89

Baseline n-gram
LM

MeDiCo 4690 / 5598 298 85 525 16.22

Home
Automation

8850 / 9639 156 161 472 8.19

● Both MeDiCo and HomeAutomation return a significantly low WER.

● The ability of the grammars to extend the span of linguistic constraints between

words has a positive effect in the context of highly domain-specific ASR

applications.

13/14

4. Conclusion

This shows that grammar-based ASR systems obtain a
competitive performance when applied in constrained
domain-specific applications.

Key points:

● We introduced an extension for easily integrating regular grammars as

LMs into Kaldi.

● Achieved satisfactory results in the experiments performed.

14/14

kaldi-grammar-compiler

4. Conclusion

Further work:

● Explore how to leverage grammar knowledge, so as to specialize a

neural-based LM (Lee, 2020).

● Generalize the input grammar format, so as to extend the applicability

of our designed tool beyond the Regulus Lite syntax.

This shows that grammar-based ASR systems obtain a
competitive performance when applied in constrained
domain-specific applications.

Key points:

● We introduced an extension for easily integrating regular grammars as

LMs into Kaldi.

● Achieved satisfactory results in the experiments performed.

kaldi-grammar-compiler

14/14

Thanks for your attention!

Lucia.OrmaecheaGrijalba@unige.ch

Any questions?

https://luciaormaechea.com

mailto:Lucia.OrmaecheaGrijalba@unige.ch
https://luciaormaechea.com/

4. References

[In order of appearance]

● Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlıcek, P.,
Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesel, K. The Kaldi Speech Recognition Toolkit. IEEE
2011 Workshop on Automatic Speech Recognition and Understanding, 2011.

● Rayner, M., Armando, A., Bouillon, P., Ebling, S., Gerlach, J., Halimi, S., Strasly, I., and Tsourakis, N. Helping
Domain Experts build Phrasal Speech Translation Systems. In Jose F. Quesada, et al., editors, Future and
Emergent Trends in Language Technology, pages 41–52. Springer International Publishing, 2016.

● Horndasch, A., Kaufhold, C., and Noth, E. How to add Word Classes to the Kaldi Speech Recognition
Toolkit. In Petr Sojka, et al., editors, Text, Speech, and Dialogue, pages 486–494. Springer International
Publishing, 2016.

● Vacher, M., Lecouteux, B., Chahuara, P., Portet, F., Meillon B., and Bonnefond, N. The Sweet-Home
Speech and Multimodal Corpus for Home Automation Interaction. In The 9th edition of the Language
Resources and Evaluation Conference (LREC), pages 4499–4506, 2014. URL http://hal.archives-
ouvertes.fr/hal-00953006

● Lee, Jay Yoon. Injecting Output Constraints into Neural NLP Models, Ph.D. Thesis. Carnegie Mellon
University, 2020.

http://hal.archives-ouvertes.fr/hal-00953006

