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Acoustic Models Lexicon Models Language Models

a

s

WORD       PHON
vous v u
avez a v e

Speech-to-Text Decoder

Est-ce que vous avez mal au ventre ?

NGRAMS          SCORE
vous avez        2.5
avez mal 1.8
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1. Introduction

1. Language Modeling and ASR 

2. LM types: pros and cons

3. Introducing a new tool

The scarcity of tools for integrating grammar-based LMs into ASR systems

Development of a new tool for easily integrating regular grammars 
into the ASR architecture

lead us to…

Under two main principles:

1. Prone to extensive use → With its implementation in a widely 

used ASR toolkit.

2. Easy-to-use → Ensuring good usability for linguists and 

translators.

kaldi-grammar-compiler
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Kaldi – Speech Processing ToolkitPRINCIPLE I: Prone to extensive use
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● Introduced by (Povey et al., 2011) as an open source toolkit for speech processing.

● Widely used within the ASR community.

● Highly usable and modifiable.

● Uses a Finite State Transducer (FST) framework for training and decoding algorithms 

(Horndasch et al., 2016).
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● Finite-state based and language independent.

● Designed for the rapid development of small to medium vocabulary speech translation applications (Rayner et al., 2016).

● Featuring an user-friendly syntax, with rules describing individual sentences.

Regulus Lite (RL) GrammarsPRINCIPLE II: Easy-to-use
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● Finite-state based and language independent.

● Designed for the rapid development of small to medium vocabulary speech translation applications (Rayner et al., 2016).

● Featuring an user-friendly syntax, with rules describing individual sentences.

Regulus Lite (RL) GrammarsPRINCIPLE II: Easy-to-use

Source pattern PhraseId pattern

PhraseId $avez_vous

Source ( avez-vous | vous avez )

EndPhraseId
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Chomsky Hierarchy

Grammar Language Automaton

Type-0 Recursively 
enumerable

Turing 
machine

Type-1 Context-sensitive
Linear 

bounded 
automaton

Type-2 Context-free Push-down 
automaton

Type-3 Regular Finite 
automaton

Kaldi supports any LM that is representable as an FST, given its finite-state-based framework

Regulus Lite grammars fall into the category of 
regular grammars

The language produced by this type of grammars
is recognized or accepted by a FST

Meaning that…
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2. Designing kaldi-grammar-compiler

Utterance 

Source $avez_vous ( mal | des 

douleurs ) quelque part 

EndUtterance
PhraseId $avez_vous

Source ( avez-vous | vous avez )

EndPhraseId

Compilation

Unification

Determinization

OpenFST

FST Conversion

G.fst Graph

● Representing the input Regulus Lite grammar.
● Readable as a LM in Kaldi.
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3. Results

Language Speakers Gender Length Utterances Words

MeDiCo (Medical 
Discourse Corpus)

French 14 9F, 5M 0h 41mn 713 ⪅6k

HomeAutomation
(Vacher et al., 

2014)
French 23

9F, 
14M

1h 38mn 3114 ⪅10k

● Dedicated corpora → Gathered via data collection campaigns.
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Acoustic Models (HC)
Grapheme-to-phone 
mapping based on:
● BDLEX French 

database.
● LIA_PHON phonetizer.

Lexicon Models (L) Language Models (G)

a

s

WORD       PHON
vous v u
avez a v e

Speech-to-Text Decoder (HCLG)

Resulting transcription

Source est-ce que 
vous avez ( des 
douleurs | mal ) au 
ventre ?

kaldi-grammar-compiler

HMM-DNN model for 
French, trained using 
Common Voice Dataset.

● Two different Kaldi ASR engines were built.

● Both integrated a regular grammar as LM in their decoding graph (HCLG).
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where:
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1. Corpora

2. ASR setup

3. Results

● Evaluation measured in terms of Word Error Rate (WER), to calculate the transcription 

accuracy.

● Compared the grammar-based ASR systems against a baseline 3-gram LM, inferred from 

data generated by the Regulus Lite grammars.

where:
S = number of substitutions
D = number of deletions
I = number of insertions
N = number of words in the reference

S + D + I
WER = 

N

Key points:
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3. Results

Model Corpus
Recognized 

words
I D S WER (%)

Grammar-based 
LM

MeDiCo 5208 / 5598 58 76 256 6.97

Home
Automation

8975 / 9639 86 338 240 6.89

Baseline n-gram 
LM

MeDiCo 4690 / 5598 298 85 525 16.22

Home
Automation

8850 / 9639 156 161 472 8.19
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● Both MeDiCo and HomeAutomation return a significantly low WER.

● The ability of the grammars to extend the span of linguistic constraints between 

words has a positive effect in the context of highly domain-specific ASR 

applications.
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4. Conclusion

This shows that grammar-based ASR systems obtain a 
competitive performance when applied in constrained 
domain-specific applications.

Key points:

● We introduced an extension for easily integrating regular grammars as 

LMs into Kaldi. 

● Achieved satisfactory results in the experiments performed.
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Further work:

● Explore how to leverage grammar knowledge, so as to specialize a 

neural-based LM (Lee, 2020).

● Generalize the input grammar format, so as to extend the applicability 

of our designed tool beyond the Regulus Lite syntax. 

This shows that grammar-based ASR systems obtain a 
competitive performance when applied in constrained 
domain-specific applications.

Key points:

● We introduced an extension for easily integrating regular grammars as 
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● Achieved satisfactory results in the experiments performed.

kaldi-grammar-compiler

14/14



Thanks for your attention!

Lucia.OrmaecheaGrijalba@unige.ch

Any questions?

https://luciaormaechea.com

mailto:Lucia.OrmaecheaGrijalba@unige.ch
https://luciaormaechea.com/
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